
AD-A252 232 __I

1 PAGE _____ ____ __

WO.wnm .V4..wm~w S % wo eo - m. .es m"mq e

SIII'P. s I3J@4S. am to O4 0Wo eOw- MW .on"WMN ,me10PU84luI. M I Ialm

1. AGENCT USE ONLYV a..... *k I3. REPORT DATE 3. REPORT TYPE AND DATES COVERED
June .17, 1992 1(b) Final Technical Report

4. TITL AND SiSll S. FUNDING NUMSI

Intelligent Signal Processing for Active Control C-NO001489-J-1633

G. AUTHOR(S)

P.A. Ramamoorthy

7. P2RFORMING ORGANIZATION NAME(S) AND ADODRSS(ES) I. PERFORMING ORGANIZATION
University of Cincinnati E1PORT NUMS1

Dept. of Electrical & Computer Eng.
-Cincinnati, OH 45221-0030

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRISS($S) 10. SPONSCON-m ImowTOG '

Office of Naval Research AGIC IEPORT NtUn

Program Manager: Dr. Eric Hendricks, Code 122
800 N. Quincy St..
Arlington, VA 22217-5000 i.r

11. SUPPLEMENTARY NOTES

11L. OISTRSUTION I AVAILAIUTY STATEMEN4T O
d n hQ" beczg opprcw:

dit t s unlimited.

1.1. LiDSThACTr (Maaww2OO'wof). .. ,, ,

This research is concerned with the use of neural architectures and fuzzy

expert systems in nonlinear system identification and in the control of such

systems. In particular, on-line identification/modeling is considered. The

research has resulted in a technique where the network can itolve (in size)

in time.so as to provide an optimal model/controller. Also an adaptive algorithm,

which is less sensitive to initial values of the weights and the learning rate,

has been developed. We have also e*stablished a common framework between neural

networks and fuzzy expert systems and developed a neuro-fuzzy architecture that

retains the best of the two areas. The use of the architectures and the adaptation

algorithm has been demonstrated on a number of applications.

14 SUsIaCT TARMS IS, NUMER OF PAGES

Neural Nets, Active Control, Fuzzy Logic, recurrent nets. ,,
OF. $6CDm CLASSICTION 15 SECURITY CLASSIFICATION 1S. SECURITY CLASSIFICATION 2. UMhTAT1ON OF AISTRACT

O RnPOT O P THIS PAGE Of ASSTRACT

unclassified .unclassified unclassified
L . I mu-.

W UNIVERSITY OF CINCINNATI
COLLEGE OF ENGINEERING

Intelligent Signal Processing For Rctiue Control

92-16790 P.R. Ramamoorthyj
I IU~iIIII~ihIIIIIIIDepartment of Electrical D Computer Engineering

Final Report, Contract No. N0001489-J-1633

OFFICE OF NAURI RESEARCH

Conkact No: NO1489-J-1633 P.L: P.A.imoodh

Intelligent Signal Processing For Active Control

1 Executive Summary

The thrust of this research is in the evaluation of neural architectures
for nonlinear system identification and control of such systems. Also, it
involved investigation into merging of neural architectures and fuzzy
expert systems and the application of the hybrid architecture/approach
in nonlinear system identification and control.

System identification is the process of selecting suitable models
and identifying the parameters of the model to represent a system
under consideration. System identification is necessary before a suitable
controller can be designed to optimize the system performance. The
model is selected through some apriori knowledge (if available) of the
system or arbitrarily if no information is available. The parameters are
estimated from a large number of input/output samples obtained from
experiments on the system. The adaptation or training procedure
optimizes the parameter values to minimize a chosen error or cost
function. The adaptation may be off-line where all the I/O samples are
assumed to be available simultaneously or on-line where one I/O
sample is available at a time and the model parameters are adapted
as and when they become available.

Linear models are well established for system identification since
they are mathematically tractable. AR (autoregressive or all-pole) and
ARMA (autoregressive moving average or pole-zero) models belong
to this category. Even under this simple case, we assume that the order
of the model is known and find the parameters from the training data.Volterra-Wener methods, Block-oriented methods (Uryson, Hammersteinmodels) and self-organizing techniques (such as Group method of data

handling) are three techniques commonly used for nonlinear system
identification and each has certain disadvantages. For example, the
Volterra-Wiener series can be thought of as a Taylor series with memory
containing various cross-product terms of the input data to produce the
nonlinear effect. The problem here is that proper nonlinear terms have to
be included in the model before the parameters are estimated. Further,
the number of parameters in the model increases exponentially as the
nonlinear terms (say from 2-nd order to 3-rd order) are increased. Also,
being a Taylor series, it cannot be applied to all practical systems
(systems containing saturating nonlinearity, for example). The other two
methods have similar problems. .,odes

SLatement A per telecon Eric Hendricks Avai, 8.,dl or
ONR/Code 1221 Dist Special
Arlington, VA 22217-5000

NWW 6/30/92

Multi-layer neural networks can be thought of as models for

arbitrary nonlinear mapping (f: x * y, where x represents the input vector,
y the output vector and f, the nonlinear transformation). The nonlinear
mapping property is achieved by using tanh or sigmoidal nonlinearities
as the nonlinear building blocks along with linear building blocks such as
summation, weighting and bias. Since a tanh function corresponds to a
ratio of two infinite degree polynomial in its argument, through addition of
many such nonlinearities, layers and weights/summers/nodes, we
create a highly nonlinear mapping without requiring any apriori
information about the nonlinear terms that need to be present in the
model. The weights provide the *degrees of freedom* necessary to
obtain the desired mapping and by systematically increasing their
number, we can increase the accuracy of mapping or modeling. Thus, it
can be argued that neural networks can outperform other techniques in
nonlinear system modeling.

There are some problems in using neural networks for system
identification. The present approaches, assume a fixed structure
(number of layers and number of nodes in each layer) and use the
back propagation or derivatives of that algorithm to obtain the values of
the weights. If such a structure doesn't work out, then one has to change
the number of nodes etc (a trial and error procedure). Also, the back
propagation algorithm is extremely slow, may not converge (whence
the learning rate has to be adjusted and the adaptation procedure
continued) and sensitive to the initial values of the weights. Such
problems limit the use of neural networks in system identification and
prohibit their use in on-line system identification.

Considering these problems, we have developed a
methodology that will let the network evolve (in size) in time through the
use of simple neural nets as building blocks. Such an approach makes
the adaptation much faster and further eliminates the need to guess the
correct number of nodes apriori and so on. It also makes the
adaptation less sensitive to initial values of the weights and the learning
rate. We have also modified a well known algorithm in linear system
modeling known as the recursive least squares algorithms that has got
faster converging properties (This algorithm also has high computational
complexity which becomes an issue when a large number of weights
are involved. The time evolving architecture helps to overcome that
problem). Software for system modeling based on this approach has
been dveloped and tested on data generated from different system
models (linear, bilinear, saturating type nonlinearities and piece-wise
linear). The results are indeed encouraging and demonstrated clearly
that our new time evolving architecture and the algorithm could be used
to model nonlinear systems without requiring any apriori information
about the system structure, type of nonlinear etc. Of course, all our
simulations assumed that there is some knowledge about the memory
of the system and we need to make further simulations to see if that

requirement can also be eliminated or at least its effects can be
minimized1 .

We have also investigated the application of the new, time-
evolving architecture and the adaptation algorithm in the design of
controllers (model reference adaptive control). The results indicate that
neural networks can effectively used to implement nonlinear controllers.
The results of this investigation have been presented in a number of IEEE
conferences (1-3 in list of publications). Copies of these papers are
appended to this report as appendices.

Fuzzy expert systems (FES) based on fuzzy logic can also be
considered as systems for functional mapping (linear or nonlinear). This
observation led to a study of the pros and cons of the two approaches
(NNs and FESs). We were able to show that fuzzy expert systems can be
mapped into an architecture that incorporates a number of smaller and
simpler multi-layer neural networks with structured interconnections
between them. This implies that though theoretically a two-layer (two
hidden layer) neural network can approximate any arbitrary mapping,
in practice, a fuzzy expert system can provide better approximation. This
can also be philosophically explained as follows: The neural network
approach uses two attributes of a system, 1) Large input samples; 2)
Corresponding output samples along with the training procedure to
model the system. It doesn't use any other information even if such
information is readily available. On the other hand, the FES approach,
uses six attributes of a system, 1) Input variables, 2) Output variables, 3)
Fuzzy sets of the input and output variables, 4) Membership functions
corresponding to those fuzzy sets, 5) Fuzzy rule base which indicate the
regions (fuzzy sets) to which the actual output(s) should belong given
that the input(s) belong to certain fuzzy sets and 6) Defuzzification
procedure to obtain the actual values of the output given the fact that
they lie under certain output fuzzy sets and the membership functions.
Thus, a FES uses much more information about the system than that of a
NN and hence ought to perform much better. More importantly,
information such as fuzzy sets and membership functions can be
deduced from the problem under consideration2 rather easily.

Based on such considerations, in our research, we were able to
establish a common frame-work between NNs and FESs, and derive a
hybrid approach that combines the general working philosophy behind
FESs with the trainability waspect of NN" to come up with a new
"NeuroFuzzy Architecture* and methodology that retains the best of

1 The time-evolving property of the new architecture can also be used to minimize the
need for knowledge about the memory of the system.
2 The choice that we make for fuzzy sets and membership functions may not be The

same as the one used in the actual system, but they don't seem to make much
difference and under such circumstances, it appears better to incorporate such
information than incorporating none.

both worlds. We have completed initial experimentation with such an
architecture and the methodology in the design an optimal controller for
a specific problem (that of backing up a truck to the loading dock from
any reasonable starting position). The results obtained are indeed
encouraging. Copies of papers (4-6) describing the approach and the
results are attached.

Another exciting fall-out from this research and which we are
currently pursuing is that of the design of neural networks with feedback
(also known as recurrent neural nets) and nonlinear system design. In this
research, we showed that the neural networks (especially recurrent nets)
can be approached from an entirely different angle3 -- that of (or as
analogues of) passive nonlinear networks. Such networks are formed by
proper interconnections of various nonlinear elements where each and
every nonlinear element is constrained to be lossless or lossy4. When
energy storing elements (which themselves could be nonlinear) are
present in such a network, we can obtain a (or set of) Input/Output
relationship(s) as nonlinear differential equation(s). The basic property
that the network is lossy (or consumes energy) ensures that the nonlinear
differential equations obtained from the network would represent
absolutely stable systems and this property will hold as long as the
individual element values are maintained in their permissible range of
values. Thus, to design complex nonlinear systems (a complex nonlinear
plant plus a controller to optimize its performance, for example), one
simply has to force the system dynamics to mimic the dynamics of a
properly constructed passive nonlinear network, a process akin to
reverse engineering.

In our investigation, which is in its early stages, we have utilized the
above approach and applied it with relative ease to a number of
problems leading to encouraging results. The fruits of such an approach
seems to be endless. For example, the approach can be applied to
linear and nonlinear controller design (for linear and nonlinear plants),
self-tuning controllers, model reference adaptive controllers, Self-
organizing networks, adaptive IIR filter design, adaptive beam forming,
Two-dimensional systems, fuzzy systems etc. In this We made a
presentation of this work recently (May 13, 92) at NOSC, San Diego.

3 The neural nets concept has its origin in biological neural networks which have
tremendous capabilities in terms of rapid/robust recognition, learning etc. It has been
the expectation of the research community that by mimicking such networks one would
be able to design complex systems with similar capabilities. However, a major problem
in the design of recurrent neural networks is the question of stability and some ad hoc
methods have been developed to overcome this problem.
4 A number of new elements have been proposed for this purpose.

The two-year funding enabled the P1 and the Co-I to partially support a
number of graduate students. One former student, Dr. Phillip Pace now
works for General Dynamics and is scheduled to join Naval Post-
Graduate School in Sept. 1992 as an Assistant Prof. Govind Girish, Song
Huang and Shi Zhang are expected to complete their Ph.D's before the
end of this year.

2. Ust of Publications

1. G. Govind & P.A. Ramamoorthy, "A new time-evolving neural
network architecture and algorithm for nonlinear system i
identification using adaptive filtering techniques," Proc. IEEE Intl.
Symp. Circuits &Systems, May 1992

2 G. Govind and P.A. Ramamoorthy, Multi-layered neural networks
for arbitrary approximation: An explanation and simulations,: IEEE
Intl. Conf. on Artificial Neural Networks in Engineering, Nov. 1991.

3. P.A. Ramamoorthy & G. Govind, Multi-layered neural networks
and Volterra series: The missing link," Proc. IEEE Intl. Conf.
Systems Engineering, Aug. 1990

4. P.A. Ramamoorthy, S. Zhang & S. Huang, "Adaptive fuzzy expert
systems for control applications," Proc. Intl. Fuzzy Systems &
Intelligent Control Conf., Mar. 1992.

5 P.A. Ramamoorthy & S. Huang, OCerebellar model articulation
controller neural network - A simple fuzzy expert system in
disguise?," IEEE Intl. Conf. on Artificial Neural Networks in
Engineering, Nov. 1991.

6 P.A. Ramamoorthy & S. Huang, "Fuzzy expert system Vs neural
networks for truck-backer-upper control problem'u IEEE Intl.
Conf.Systems Engineering, Aug. 1991.

3. Appendix (Cooies of publicatlons}

A New Time-evolving Neural Network Architecture and
Algorithm for Nonlinear System Identification using Adaptive

Filtering Techniques'

Girish Govind and P.A. Ramamoorthy
M. L. 30, Department of Electrical & Computer Engineering

University of Cincinnati, Cincinnati, OH 45221-0030

Abstract hundreds of thousands of iterations. Fine adjustment of
the learning parameters and repeated presentations of

Concepts from adaptive filtering and some heuristics are the .vailable data are required for satisfactory approx-
utilized to obtain a fast convergent online neural net- imation. In online adaptation, the training is slow and
work especially suited for nonlinear system identification. may not converge. There is also no method (or heuris.
Rather than training a fixed neural network structure, tic) to select the number of hidden nodes for a good
the algorithm presented allocates nodes when required. approximation - less numbers can lead to an imprecise
This provides for an optimal allocation of hidden nodes model, excess numbers can make the training very slow
in this structure. The results obtained show that the and provide poor generalization after trainng[3].
neural network model presented is a viable approach for This paper describes an algorithm that has been devel-
Nonlinear System Identification and can be applied to oped for performing online adaptation of the weights.
a large dass of nonlinear systems. Simulations are pro- Unlike the backpropagation algorithm that trains a fixed
vided that show the fast convergence of this neural net- structure[2], in this algorithm the network is built slowly
work structure. * in a step-by-step fashion. This evolving architecture

1. Introduction methodology permits a near optimal allocation of hidden
nodes and at the same time, provides sufficient 4degrees

The process of abstracting retioship between inputs of freedoms for approximating a nonlinear system. Al-
and outputs using only the dat observed from the sys- though the computational complexity of this algorithm
tenm is called system identificatilon~l]. Most of the re-thuhhecm tainlopexyofhsagrtm
ct evellpets syse ienicatnh.Mot of he sper iteration could be higher than that of the stan-
cent developments have been in the area of linear system dard backpropagation, it exhibits fast convergence. Also
identification where a linear structure is assumed for the as the network is built during training, the complexity
model. However, most physical systems are nonlinear changes from iteration to iteration.
and thus a nonlinear model is required to get a globally
valid model (true for all inputs) for a system. 2. Nonlinear System Identification
Artifcial neural networks have received increasing atten- System identification usually consists of two stages -
tion in recent years. Neural models are composed of a model selection, and parameter estimation. In neural-
highly interconnected mesh of nonlinear elements (neu- based system identification, the selection of the number
tons) whose structure is drawn from our current under- of hidden nodes corresponds to the model selection stage.
standing of the biological neural system(2]. The backpropagation algorithm utilizes gradient descent
The main properties of multi-layered neural networks are to determine the weights of the network and thus corre-
their ability to learn from experience, generalize the sponds to the parameter estimation stage. Neural net-
performance over untrained inputs, abstract relation, works in system identification have not seen much change
ships between signals, and to arbitrarily approximate since they were first proposed by Lapedes and Frber(4]
any map given sufficient number of neurons. Clearly and also independently by us(S].
these properties are the same as those of interest to re- The next section presents the development of an adaptive
searchers in the area of system identification. Although neural algorithm that works quite differently from con-
the above properties appear to be the solution to all the ventional designs. It has some similarities with another
problems in conventional system identification, in actual recent algorithm that performs model building combined
practice there are other limitations that restrict their with parameter estimation(6J but as will be shown with
performance. For instance, convergence is not easy to the chaotic prediction example, the presented algorithm
obtain in multi-layered networks and may take several is far more parsimonious in the number of parameters,

IThe work reported ha has bee supported by NASA and faster.
Hleadquarters throug the NASA-UC Space Eng3.erin - Newtah
tsr #Ad Offe of Naval Rmarch Grant Number 1 w Architecture and Algorithm
1633 In a recent paper(3] it was discussed that the problem

of approximation in a multilayer neural network with bi- thresholds are set to a high value at the start of the
nary neurons is NP-complete but if the network can al- simulation but are allowed to decrease slowly to a small
locate more nodes it may be possible to solve a problem value. The neighborhood parameter discourages the al-
in polynomial time, and thus we use an evolving archi- location of gaussian bar nodes very near to each other.
tecture strategy. We restrict the scope of the presented The complete detailed algorithm has not been
algorithm to problems of nonlinear system identification flowcharted here as it would reqaire a lot more space
where the input-output data is not binary. but the main ideas behind it are given here. If the mod-
A node is allocated when really required and the param- eling error at the output is greater than the variable error
eters are adjusted for other data points. The strategy threshold value at the time, and the distance to the clos.
of allocation and adaptation is also accompanied with est neighbor gaussian bar node is greater than the vari-
a strategy for pruning as redundant or noncontributing able neighborhood threshold value then a new gaussian
nodes may be allocated while growing, or nodes may be- bar node is allocated. However, if the modeling error
come so after adaptation. The next few paragraphs will is much greater than the error threshold (several times
provide some more detail about these new heuristics and over) then a new hidden node is allocated (for the two
in the next section these will be tested for some sample layer structure). If the error is less than the threshold
problems. then no new structure is allocated but all the weights,
In this paper we use a node with a gaussian bar(T] acti- and the mean and variances of the hidden nodes and
vation function which is different from both the sigmoid gaussian bar nodes are adjusted to move towards lower-
and the radial basis functions as it has a semilocal re- ing the error.
spouse. The neural structure used for this algorithm The method to prune the gaussian bar nodes and the
is as shown in Figure 1. The bold lines are weighted hidden nodes is to check if the weighting factors at their
connections while the dotted lines are only performing outputs are significant. This method is used to prune
distribution of the signals. The larger circles represent gaussian bar nodes in the first layer (and the parallel
nodes which perform a weighted summation of the inputs direct layer), and to prune hidden nodes in the second
and then propagate the sum through an adjustable gaus- layer. Other conditions to check for are the mean of the
sian nonlinearity - these are referred to as hidden nodes, gaussian bar node being adjusted and moved outside the
the small circles represent an adjustable gSaussian non- range of the signal or the gaussian node becoming just a
linearity - these will be called gaussian bar nodes. More spike.
of each of these get allocated during the training proce- It is important to note that the above scheme is only a
dure. The output stage is linear and a parallel structure heuristic, like several other methods that are in use today
that has direct connections (i.e. no hidden nodes) to the to speed up the convergence. The heuristics presented in
output is also built. This total structure is used as a this paper combine the stages of model selection and pa-
model for approximating the problem at hand. This can rameter estimation and work better than other training
be written as algorithms. In The algorithm by Sanger(6] the network

M P(,) Q is grown at regular intervals and never pruned. Here the

In, " = N ,,,N,(zv) + " w2,,-N2 (vk) network is grown when desired, and pruned at regular in-
- -tervals. This pruning procedure is very important as it

improves generalization and also keeps the network size
where in check, thus yielding a small network that can solve

M JKm) the given problem.

V, =E L L w.,JN1(z) 4. Simulations
In this section, three examples are provided. Two exam-

where the following notation has been used: z, is one pies am on online nonlinear system identification, and
of the M inputs, y. - one of the N outputs, w - the one on online chaotic series prediction. The presented
parallel direct structure weights, ul - weights of the first performance is typical of the networks and the learn-
layer, and w2 - weights of the second layer. The neural ing, and growing parameters are the same throughout
structure after training can be described by the three the simulations. The software has not been optimized in
numbers, P(m) - number of gaussian bar nodes allocated 'any way at this time and yet each simulation takes no
for direct structure input m, Q - number of hidden nodes, more than ten minutes on a Sun workstation.
and R(m) - number of gaussian bar nodes for first layer
input m. N, NI, or N2 represent adjustable gaussian System identification example I

nonlinearities where both the center and the width is
adjustable. The following system is simulated and the network is al-
Two parameters are very important for the allocation lowed to grow using the algorithm described in the pre-
proem - a variable error threshold and a neighborhood vious section.
parameter is used to decide when new hidden nodes,
or new gaussian bar nodes should be allocated. These y(k + 1] = 0.8y[k] + (u(k] - 0.8)u(k](u(kJ + 0.5)

Uniformly distributed random noise in the range (4-, 1] were 8, 10, 9, 5, 6 and 10. Considering all the parameters
is used for the input u(k]. The modeling error is used to this corresponds to less than 2000 parameters. Thus this
grow or adapt the network structure in an online fashion. algorithm is very parsimonious in the parameters.
As can be seen in figure 2 the network quickly learns the
input-output mapping. The final network structure was
P(1) = 7, P(2) = 9, Q = 5, R(1) = 5, and R(2) = In this paper some heuristics have been presented that

3. After this training, the parameters of the network allow fast and online construction of nonlinear input-

were kept fixed and the network tested with the actual output maps from data. Unlike the usual multilayered

model data. This is shown in figure 3 and the actual and neural network where apriori knowledge is difficult or ir-

modeled output are not distinguishable. possible to incorporate into the network, in the presented
algorithm it is straightforward.

System identification erample 2 It is expected that the presented algorithm will find

use into some engineering applications which require on-
The system in this example is a multi-input, multi- line performance - particularly channel equalization, and
output one with four inputs and two outputs. nonlinear adaptive control.

+ 1 = []] [k] References
The two inputs ul[k] and u2 [k] are random uniformly [11 L. Ljung, System Identification: Theory for the User.

distributed in the range [-1, 1]. This model corresponds Engewood Cliffs, NJ: Prentice-Hall, 1987.

to a M = 4, N = 2 model, and after convergence the [2] J. Hertz, A. Krogh, and R. G. Palmer, Introduction

structure has the P values as 10, 12, 13, and 15. The to the theory of neural computation. Reading, MA:

number of hidden nodes was 25 (this was imposed on the Addison-Wesley, 1991.

model), and the R values were 21, 18, 13, and 15. After (31 E. B. Baum and D. Haussler, "What size net gives
valid generalization," Neural Computation, Vol. 1,

the model has been constructed the network output was pp. 151-160, 1989.
compared against the actual model outputs. These are (41 A. Lapedes and R. Farber, "Nonlinear signal pro-
shown in figures 4 and 5. Here, the network outputs ae cessing using neural networks: Prediction and system
not as exact as the other simulations but this is due to modelin " tech. rep., Los Alamos National Labora-
the restriction placed on the number of hidden nodes. tory, 191f.

Chaotic prediction: Mackey-Glass (r = 30) [51 P. A. Ramamoorthy, G. Govind, and V. Iyer, "Signal
modeling and prediction using neural networks," in
International Neural Network Society First AnnualThis is a classic benchmark problem for neural network Meeting (Boston, MA), September 1988.

training algorithms. This was first used by the LosAamo nonlinear dynamics group and is now tested for [61 T. D. Sanger, 'A tree-structured adaptive net-
work for function approximation in high-dimensional

by every known multi-layered training method. spaces," IEEE Trans. on Neural Networks, vol. 2,
0.2z(t - r) pp. 285-293, March 1991.

I(t) = 1 + XiO(t - r) - 0.1Z(t) [7] E. Hartman and J. D. Keeler, 'Predicting the future:
Advantages of semilocal units,* Neural Computation,

A fourth-order Runge-Kutta is used to provide values of vol. 3, pp. 566-578, 1991.
z at discrete time steps. The initial condition used is o
x - 0.8. This problem corresponds to a 6 input (M =
6), one output (N = 1) problem. The six inputs corre-
spond to zft - 6m], m = 0..5, and the desired output is
z[t + 6]. The training error squared is shown in figure 6
and exhibits the usual fast convergence. The actual se-
ries is plotted against the predicted series for a six-step
ahead prediction in figure 7. Prediction further into the
future can be made through iteration of the map. The
network constructed here has a normalized performance
index of 0.05 which is almost as exact as the simulation .. ,, ,
by Sanger(6]. In that paper there were 20 sinusoidal ba-
sis functions used for each of the 6 inputs and 106 trees
were constructed i.e. the total number of estimated pa-
rameters was over 12,000 from about 42,000 samples. In
contrast to that simulation, the algorithm presented in top%&
this paper constructed a network of P values as 5, 7, 5, 4, Figure I. Neural Network structure.
4, and 7. There were 18 hidden nodes, and the R values

12 02

0

1 .02

0.8 -0 2

.0.6

0. .0.8

-1.

0. -1.4

04

0 1000 2000 M000 40 00 6000 7000 MOO 100 120 140 160 180 200

Figure 2. Identification example 1: Figure 3. Identification example 1:
Modeling error (squared) Comparison between the
during training. actual model output and

the network output.

2.5 2

2"

11

035 0.5
0 I

-0.5 0 -:

-1 .13
.2 4

700 720 740 760 780 800 700 720 740 760 73O800
Figure 4. Identification example 2, Figure 5. Identification example 2,

Output # 1: Comparison Output # 2: Comparison
between actual model out- between actual model out-
put and network output. _ put and network output.

0.45 1.4

0.4
1.2

0M5
03 1

025
0.8

0.2

0.15 06

0.1
0.4

OAS005
0 0,2

1000 2000 3000 4000 5000 6000 7000 8000 100 200 300 400 0 600 700 800
Figure 6. Prediction example: Online Figure 7. Prediction example: Com-

training error (squared). parison between actual se-
ries and six-steps ahead
predicted series.

Multi-layered Neural Networks for
Arbitrary Approximation:

An Explanation and Simulations

Girish Govind and P.A. Ramamoorthy
Mail Location # 30

Signal Processing and Computer Vision Group
Department of Electrical and Computer Engineering

University of Cincinnati
Cincinnati, OH 45221-0030

Abstract globally valid model (valid for all inputs) for

Recently there has been a lot of res h into a nonlinear system, a nonlinear model has to

the approximation properties of multi-layered be used.

neural networks. The apparent ability of ujL- The Volterra-Wiener approach is the most
versa approximation by multi-layered neural ne.- commonly used technique for nonlinear sys-
works is of interest as it would be very useful in tern modeling and is well established(2]. Neu-
several applications including system identifica- ral Networks were proposed for nonlinear sig-
tion and control. In this paper we focus our at- nal processing and system modeling about two
tention on system identification and bring out cer- years ago by Lapedes and Farber[3], and in-
tain similarities and dienmces between the con- dependently by us(4]. Since then there have
ventional Volterra Series techniques for nonlinear been several papers applying the neural net-
system identification, and the neural network ap- works like a "black box" to almost every non-
proach. Using concepts such as Continued Frac- linear task. However little attempt has been
tion expansions, the neural network is shown to
be able to approximate very highly nonlinear sys- made to try to compare the neural network
tams with a few weights as compared to a VolterrA method with conventional methods of non-
Series which required a large number of coeffi- linear system identification to put them in a
cients to perform the same task. Also, the neural proper perspective. Such an approach would
network can approximate nonlinear systems that enable us to identify the potentials and draw-
cannot be approximated by the Volterra Series backs of neural networks. Further, it will en-
approach. Simulations are presented to show the able us to arrive at new adaptation algorithms
superior performance. and architectures.

1 Introduction 2 Nonlinear System Iden-

System Identification involves the selection of tification
proper models and inferring the model pa-
rameters from observations. The quality of There are a number of Nonlinear System
ft is obtained using a suitable e.ror crite- Identification techniques available in the lit-
rion. The model can be linear or nonlinear. erature (see for example, the excellent suir-
Linear models are-wedl established for sys- vey in (51). These methods can be clas-
tern identification(l], however nonlinear sys- sified as - block-oriented systems, parame-
tern identification has not received as much ter estimation methods for particular model
attention as it is usually more difficult to come structures, heuristic GMDH (Group Method
up with the proper models and algorithms to of Data Handling) methods, functional series
estimate their parameters. Hence, nonlinear methods of Volterra and Wiener, and the new
systems are normally approximated using lin- multi-layered Neural Network approach (3, 4].
ear models by restricting the range of pertur- In this paper we concentrate oan the two re-
bation to a fixed and small range. However, maining methods, the Volterra series and the
such a model is restricted for system oper- multi-layered neural network approach - both
aions within that range, and to develop a are general methods that can be used for iden-

tifhcation of a large class of nonlinear systems. Wiener functionals alleviate the problem cf
To relate to the rest of the paper, we now measurement by using orthogonal function-
present the salient ideas of the two methods. sa derived from the Volterra functionals for

white Gaussian inputs, and are convergent for

2.1 Volterra series a broader class of systems. However, the prob-
lem of large number of terms in the functionals

The Volterra series can be considered as a is still present and the input has to be white
Taylor series with memory and can be writ- Gusian (or made so) and hence is not very
ten as N practical

y(n] = ho + E h,1(s(n- i1 +
,=O 2.2 Multi-layered Neural Net-

N N works

E (- +-..
imO j=0 The multi-layered feedforward net with sig-

for the representation of a nonlinear time- moidal nonlinearities was shown to be able to
invariant causal system. Just as a linear time- approximate arbitrary nonlinear systems by
invariant system is completely characterized Lapedes (3] and independently by us (4]. Be-
by its impulse response, a nonlinear system is sides their approximation capabilities, multi-
represented (globally) by a Volterra series is layered neural networks can be trained from
completely characterized by its Volterra ker- a large data set without requiring any apri-
nels - A, Ah2 Symmetry can be assumed in ori information about the system (structure
the higher order kernels e.g. h2 [i, j] = h2[', :1 and order). The backpropagation algorithm is
without imposing any restrictions on the class commonly used to train a multi-layered feed-
of systems that can be represented. forward neural network(8].

According to the theory, any nonexplosive, The Kolmogrov Theorem is commonly used
time-invariant, causal system with a fading to justify the neural network approach to
memory can be approximated by a Volterra nonlinear system identification. This theo-
Series(6]. In practice, the order cannot be in- rem states that a two layer neural network
creased to an arbitrarily high number as 1) is sufficient for approximating arbitrary non-
then the measurement of each Volterra kernel linear systems given sufficient number of hid-
is not simple, their individual responses can- den nodes. Recently, it has been discussed
not be separated and 2) the number of points that the Kolmogrov Theorem is actually irrel-
in the kernel to be estimated increase expo. evant to the approximation property of neu-
nentially with the order of the kernel and the ral networks (91 as Kolmogrov Theorem only
delay (N) used. For a Volterra model using N talks about the representation of functions
inputs, for each order k, the number of points of a certain number of variables as functions
for which the kernel needs to be estimated is (g,) of functions (hp, which can be sigmoidal)
N1/k. These problems with the -Volterra sw- of fewer (one or more) variables. It is sug-
ries, impose severe restrictions on the applica- gested that Kolmogrov Theorem may not ap-
tion of Volterra series to many practical sys. ply to the representation properties of neural
tems. Hence, most applications are restricted networks as it is based on using the same
to systems where 'mild' polynomic nonlinear- sigmoidal function in the place of properly
ities are present and second or third order chosen continuous functions. Certain ap.
models are sufficient. Recursive least squares proximations might require highly nousmooth
algorithms have been developed(71 and used functions whereas the sigmoidal function is
in this paper for obtaining the second order a very smooth function(g9. The smoothness
and third order Volterra kernels with some- property is very important for learning and
what reduced computational complexity. generalization.

In addition, as the Volterra seris can be In spite of the above rmark., in practice
considered as a power series with memory, the neural network method for approximating
there are other limitations. For example, an arbitrary input-output map seems to work
it does not converge for certain nonlinear well though it is quite conceivable that there
systen21 such as saturating elements, and am specific methods that work better for a
systems which have high order nonlinearities particular problem. In the next sections, we
require a very large number of terms to yield view the approximation problem from a dif.
an acceptable representation. ferent perspective and present arguments and

simulation results that establish the validity function) when truncated after the fourth con-
for the use of multi-layered feedforward neu- vergent can be written as
ral networks for modeling nonlinear systems. tanha(z) ~+ -

3 Approximation -by Neu-
ral Nets or

Here we shall concern ourselves only with tanh(z) = 105 + 1OX3

functions realized by the neural network after

convrgence, and not on the training. In such A plot of this would show dearly that
a network the sigmoidal function is the nonlin- the truncated continued fraction expansion is
eauity that imparts it the nonlinear mapping very accurate while a corresponding truncated
property. Other approximation schemes can Taylor series expansion is wildly oscillating.
also be depicted as networks having different In fact, some truncated forms of the expan-
basic functions. In general, the approximation sion using Taylor series were even unbounded.
of functions can be considered as a two.step Hence we will be using the "truncated contin-
process ued fraction" expansion for the tanh function

in this paper.
" Choosing a set of basis functions 4(z, ws) Consider the structure in Figure 1 with two

that are defined in the region of interest hidden nodes and one output node. The input
of the input z, and to the hidden layer node i is an affine trans-

" Determining the parameters w in the ba- formation of the inputs

is functions to get a good fit. z1[i, = wlt,[ll.()+wr(s][2].z(n-l)+lt1

In conventional approximation techniques Then the output of each of the two nodes of
the choice of basis functions is made consider- the tpu t laye of hon dm of
ing the clames of functions that can be effec- the first hidden layer would consist of a ratio
tively approximated by them. To measure the ofpolomias inr(n] Tdh (n- with their
quality of the approximation a distance mes.- sio-pduct terms. The numerator expres-
sum (which is usually the L2 norm) is d. snoi WI have 10 terms (and coefcients) and
Clearly, Volterra Series can also be cod- the denominator expression having 14 terms
ered as an approximation function where the (and coefficients). These terms are derived
basis functions consist of power and product depend on the values of the three free var-
tm in the inputs. However, approximation desd the vales o the three free an-
by multi-layered feedforward neural networks 811e, u the wehts - Il(yl[h], w1(,r[2], and
does not fit into the above picture of aprox- 91eiJ. Thus there are only three ndetees of
imation theory. The approxiation function eedom in choin the 24 coecients.
f(z) for the net is the nested sigmoid equa.
tion.

f(--) = g(E w2Og(E wI2g(wlzr)))
, y h wlO

where the nonlinearity g is sigmoidal. Thus
the basic function g is embedded in the net-
work and so are the weights (variable panm- wil
etes). Now we give methods of analyzing the
above approximation functions using contin-
ued fraction expansions for the embedded sig-
moid functions.

Continued fractions(101 'have bee used in x(n] z(n- 1]
the pat for digital filter syntheis, computer
evaluation of functions, coding theory and Figure 1: A simple neural network
prime factorization algorithus. They yield
mpresentations for functions which are very It can be noted though that this form is
exact. The expansion for tanh (a sigmoidal clearly more general than that of the Volterra

representation which takes the form of a all three simulations. Neural structure used
power series. Further, in Volterra represen- have ban specified as a-b-Cd wher a, b, c,
tation we make apriori assumptions about and d are the nodes in the input, first hidden,
the nonlinear terms that need to be present second hidden, and the output layers respec-
whereas an infinite order is used in neural net- tively.
works and can model much higher order non-
linearities that are practically impossible with Model1
the Volterra series.

At the next layer of weights the process is Ti is a purely linear model and was sim-
repeated and the output of the next layer is ulated to show that the neural network is
again a ratio of series in its inputs. It cannot als capable of approximating liner map-
be written out here conveniently but it can pings. It should be noted that though a lin-
be visualized that the final form from input ear model would converge exactly to the siim-
to output is a ratio of two infinite order series u/ated model and hence the fixed weight mod-
in the inputs. eling error would be nearly zero (within a fewIt is known that for an arbitrary input- iterations), the neural network error is only
output map, an exact representation is small (after several hundred iterations). Thus
impossible(11]. However as shown above, the a linear model should be tried before model-

Neural Networks can generally provide a bet- ing with neural networks as for linear map-

ter approximation than other techniques. In- pings the linear model is more accurate, and
creasing the number of nodes in a layer; or les, effort is required for a fit.
increasing the number of layers increases the
number of "degrees of freedom" for the neu- 0.4"

ral network leading to better approximations
though that also increases the possibility that
the network may be trained on outliers in the I 4.ea
case of noisy data. I
: When only one hidden layer is used, the
output will consist of summations of sigmoidal 4.10
outputs of affinely transformed inputs. The
approximation capability of such a network
would be very limited. Obviously adding more
layers produces more complex nonlinear terms lad=
and hence intuitively it can be stated that a
two-layer network would approximate an arbi- Figure 2: Model 1 Neural frosen error

tray mapping much better than a single-layer
network with the same degree of freedom. The Model 2
same conclusion is arrived in (121 using rigor-
ous real analysis. A second order Volterra model wu vey ac-

curate and estimates of the parameters were
.4 S lations exact. The multi-layered neural network with

344-1 nodes was as exact as the Volterra
In this section a number of simulation exam- model. Thus for structured nonlineauities, the
ples are provided to show the approximation neural network is capable of working as well
capabilities of neural networks and compared a Volterr modelb
with the performance of conventional Volterra
nonlinear techniques.

In the simulations, the Normalized Root This smulation clearly shows the ability of
Mean Square Error (NRMSE) a amaral network to ua high rder Don-

NR.MSE = .- (])9] ,lnewities (the sine function can be expanded
- E(fl9]J as an infinite Taylor series about x=0). The

Volterra model does not converge. On the
is used as a performance index. Table I at other hnd, a muti-laered neural structure

the end gives the details of the simulations of 2-.1 nod" was very accurate.
performed. In cases where the output val-
ums were scaled, the scaled data was used for

1 1"°"
a L . a.,l_,,...-_ . IL ,..i I

Figure 3: Model 2 Voltera froen error Figure 6: Model 3 Neural frozen error

*.

O. I.I

1 1

Figure 4: Model 2 Neural frozen er Figure 7: Model 4 Volterra frozen error

e. u, map. For this nonlinear system there are two
Volterra models, depending on the range of
the input, one model for I z j< 0.2 and an-

I ,.se o ner oafor I z 1> 0.2. Modeled separately it
would give accurate-Volterr models but this
may not be possible as the input to the nonlin-
.sity could be an internal signal in a system.
The neural network has no such problem as it

a numerator and denominator of polyn*-

e ieemialsmptentation.

figure Model 3 Volterra fozn emor

C.

5.

Even thoughi the nonlinserity was Simple,
neplovivo, and time-invariant, so sutable

Volterm model could be found. A imple aeu-
ral network of 1-2-2-1 nods was aed and gave
a very accurat -rermtadlon of this noulim-.
earity. The graph is not shown hen an the -4
e21 WON inmignic a t in c with the
am with the Volterra model.

The fA==e input-output ap W showU Figure 8: Model 4 approximations
in Figure 8. The neual network modeled
the noulinearity alos actly and is india-
tinguishabl. from the original input-output

SiummAked Spwm a, O- S41004
Med" rwua HamSm

y~bkI - 0.3.ahe I -524,4141 I-I.-ua't & 1eueuh

4-1 A-Ner-

+ L24-IA-2 N(A G.) swedto ad Order_

y "1 - 0..(.i G.=5.,1.21 140,,5.-6) m
"14-,.49 Pake L94 Ran.,d..l 3 LIOW

wIV,21 & ,4.m

Wi.. Unior PUS, L44.155.4 ,i474
2ad -edor

nai - .L &A (.l) + 04a4- Ll A-sa 4t Ne ra -

_S_9. 3rd orde

I+(4 2 Nera - -a
1 + (sIn-i) '(1 .. 21 .88

Table 1. Simulations on various models.

5 Conclusions work Soity First Annual Meeting, (Boston,
MA), September 1988.

In this paper multi-layered neural networks (51 S. A. Billinp, 'Identification of nonlinear
using "tanh" building blocks are compared systems - a survey,' !EE Proc. Part D,
with conventional Volterra series methods for wL IT, pp. 272-285, November 1980.
the task of nonlinear system identification. (6] S. Boyd and L. 0. Chua, 'Fading memory
For the neural model, model selection core- and the problem of apprimaidng nonlin-
sponds to selecting a suitable structure for ear opeos with Volterra series," IEE
the representation which controls the num- Tns. on Circuits and Systems, vol. CAS-
ber of degrees of freedom. For highly non- 32, pp. 1150-1161, November 1985.
linear systems, multi-layered neural networks Vn . j. Mathews and j. Lee uA fast ecurave
provide a representation with only a few least-squame second order Voterra ter,' in
weights, where conventional Volterr series Proceedings of the ICASSP, 1988.
methods would not be computationally prac- [8] L P. Lippmann, "An introduction to con-
ticaL Also, for some simple nonlinear sys- puting with neural nets,* IEE ASSP Mag.
tern which are bounded-input and bounded- ass, pp. 4-22, April 1987.
output, the Volterra series does not exist al- (91 F. Gkod an T. P a
though it is handled easily by a small network. o Of neWorkr Kolmoprs the -
Finaly, simulations were provided which sup- - a irelevant,* Neual Computation,
port the ideas presented here. voL 1, pp. 465-469, 1989.

[101 AL H. Sam, Continued fractios,' IEEE

References AMSP Magazie July & October 1989.
(11] T. Poggio and F. Girorn, 'A theory of net-

(11 L. Ljung, System Identification: Theo for works for approximation and learning.* tech.
the User. Englewood CU, NJ: Prentice- rep., LI.T. Al Laboratory and Center for
Hail, 1987. Bioloical Infrmation Processing, 1989.

[21 M. Schetsen, "Nonlinear system modeling (121 G. Cybenko, 'Continuous valued neural net-
based on the Wiener theory,* Proc. al the a with two hidden layers ae sficient,*
IEEE, vol. 69, pp. 1357-1573, December Me/emaetcs of Control, signals and Slo.
1981. tama (submitted), 1988.

(31 A. Lapedes and R. Farber, 'Noninear sig-
nal processing uing neural networks. Pre-
diction and system modeling." tech. rep., Los
Alamos Nationa Laboratory, 1987.

(41 P. A. Ramnmoorthy, G. Covind, and V. lyer,
"Signal modeling and predictiou sing nea-
ral networks,' in International Neural Net-

Multi-layered Neural Networks and Volterra Series:
The Missing Link

Girish Govind and P.A. Ramamoorthy
M. L. 30, Signal Processing and Computer Vision Group

Department of Electrical and Computer Engineering
University of Cincinnati

Cincinnati, 01 45221-0030

Abstract The GMDlI algorithmis are self-organizing and

This paper is an attempt to bring out the similar- heuristic in nature.
ities and differences between the conventional Volterra In this paper we concentrate on two of these
series techniques and the new neural network approach. methods, the Volterra series and the multi-layered
The analysis is done from the point of view of represen- neural network approach - both are genera. meth-
cation capabilities for nonlinear systems and it is shown ods that can be used for identification of a large
that a small neural network can represent high order class of nonlinear systems. In the next two sections
nonlinear systems while a very large number of terms we present the salient points of the two methods.
are required for an equivalent Volterra series represen-
tation. This is shown by means of a series expansion 2 Volterra series
of a neural network. Finally this paper analyses issues The Volterra series can be considered an a Taylor
common to the two nonlinear modeling approaches. series with memory and can be written as
1 Introduction N

y[-n = ho + E hj[iz-n- i +
Many problems in controls and signal processing i=o
require accurate models of the systems involved, N N
systems which are usually nonlinear to some ex- h2 [i, jz[n - tJz[n - ji +""
tent. System identification techniques are well es- i=O j=0
tablished ror linear systems and are widely used, for the representation of a causal system.
but methods for nonlinear systems have not re-ceived as much exposure. This is due to their in- A nonlinear system represented (globally) by a

ceivd a muh eposre.Thisis ue o teirin- Volterra series is completely characterised by its
herent complexity, and difficulties in deriving iden- Volterra seriesi
tification algorithms for models which would be ap-
plicable to a large class of nonlinear systems. Al- As the Volterra series can be considered as a
though it is possible to represent nonlinear systems power series with memory, there are limitations of
by linear models for a restricted operating range convergence in its application to nonlinear prob-
and use the well developed system identification lems [4J. For instance, the Volterra series cannot
techniques [1), a nonlinear process can only be char- be used to represent saturating elements, and sys-
acterized by a nonlinear model. tens which have high order nonlinearities require a

Nonlinear system identification [2) methods can very large number of terms to yield an acceptable

be of several types - functional series methods of representation. However according to the Weier-

Volterra and Wiener, block-oriented systems, pa- strass theorem the system can be uniformly approx-

rameter estimation methods for particular model imated over a bounded interval. Measurement of

structures, heuristic GMDII (Group Method of the Volterra kernel is not easy as the contribution

Data Handling) methods, and the new Neural Net- of each Volterra operator cannot be separated from

work approach 131. Block oriented techniques re- the total system response.

quire structure detection, and parameter estima- As can be seen from the above series, the num-
tion methods vary depending on the model used. bet of terms in the kernels of the series increases

exponentially with the order of the kernel and the weights - this provides relatively fast training of
delay (N) used. This is the most dimcult problem weights and no adjusting of step and momentum
with the Volterra series and imposes severe restric- terms is required to obtain convergence.
tions on the application of Volterra series to many 4 Expansions for Neural Nets
practical systems. Hence, most applications are re-
stricted to using second order models. Recursive In this paper we shall concern ourselves with func-
least squares algorithms are used in this paper for tions realized by the neural network after conver-
obtaining the second order and third order Volterra gence. The nonlinearity used in multi-layered neu-
kernels with reduced computational complexity. ral networks is known, typically the sigmoid or the

Wiener functionals alleviate the problem of tanh function. In this paper we shall use the tanh
measurement by using orthogonal functionals de- function for the expansions, simulations and the
rived from the Volterra functionals for white Gaus- discussions. Corresponding work for the sigmoid
sian inputs, and are convergent for a broader class can be easily seen as the two functions are related.
of systems. However, the problem of number of The tanh function can be written as
terms in the functionals is still present and the in- e2 -1

put has to be white Gaussian (or made so) and tanh(z) , e + I
hence is not very practical, and the exponentiation function can be ex-

3 Multi-layered Neural Nets panded as a Taylor series about z = 0.

= 2 (2z)2 (2z) sThe error propagation net was first shown to be e2c = I + 2Z + 2z? + (+ .-

able to approximate arbitrary nonlinear systems by which is a valid expansion for all real values of
Lapedes (31 and independently by us 15]. The error r. Therefore the lanh function can be written as
propagation network is explained in detail in [6]. 2a(20h 3

tanh(z= 2+ r+ +.
y~n)22+ + + ..

Output for all values of x.
Cybenko [7] and others have shown the approx-

Hidden imation capabilities of the multi-layered structure
Layer 2 using real analysis techniques. This paper analyses

the multi-layered structure using series expansions
Hidden to show the origin of some of those properties and
Layer I relate them to corresponding ones of the Volterra

series at a more intuitive level.

Input Layer Consider the structure in Figure 2 with two hid-
den nodes and one output node. The input to the

U~n) D Dhidden layer node i is

Figure : Multi-layered Neural Network+uJ2J.(n- 1)+thetali
and if we assume the representation of tanh to

The neural network approach to Nonlinear sys- be approximated by terms in the expansion up to
tem identification is based on the Kolmogrov Neu- the third order, then the output of each of the
ral Network existence theorem [61 which states that two nodes of the first layer consists of a ratio of
a two layer neural network is sufficient for approxi- third order polynomials polyi] each having 10 coef-
mating arbitrary nonlinear systems given sufficient ficients multiplying terms derived from the inputs.
number of hidden nodes. Although the Backprop- These 10 coefficients are in turn derived from the
agation algorithm which is used to train the multi- three "degrees of freedom" wIl[i](l], wIlli[21 and
layered neural networks is a straightforward exten- thetal[i] and the output in of the form
sion to the well-known Least Mean Square (LMS) po1V[i]
algorithm for linear structures, its convergence pa- 2 + poly4i]
rameters have to be finely adjusted to get fast con-
vergence. In the simulations in this paper we have The polynomial polylpi] can thus be chosen only
used a conjugate-gradient technique for training the with a certain number of degrees of freedom and

ystructure of 1-2-2-1 nodes was used. Modeling er-
nJ ror results with frozen weights are shown in Figure

3a and 3b. Figure 3c is a plot of y(n] vs. z[n] with
Wi 10 frozen parameters and the neural network modeled

the nonlinearity almost perfectly while the third-
order Volterra model yielded a very poor approxi-

II mation.

zfrj , [n- 1

Figure 2: A simple neural network

this restricts its use to only very simple systems.
This form is however clearly more general than
that of the Volterra series which only consists of
a series as this expansion has a numerator series
and a denominator series. Even though here only
a truncated third order form is shown it is actually :
an infinite order polynomial and can model much
higher order nonlinearities than are practically pos- Figure 3a. Neural modeling error
sible with the Volterra series.

At the next layer of weights the process is re-
peated and the output of the next layer is a ratio
of polynomial in its inputs. It cannot be written
out here conveniently but it can be visualized that
the final form from input to output is a ratio of two
polynomials in the inputs. Thus

- Numerator polynomial in inputs
Pin] - Denominator polynomial in inputs

and both polynomials are of an infinite order.
There are however only limited "degrees of free-
don s" in choosing these polynomials as their coef-
ficients are a function of the weights and in the
network above there are only 9 weights. More hid-
den nodes may be required to tailor the response Figure 3b. Volterra modeling errormore closely.

5 Simulations Netwrk '

In this section the insight derived in the last section
is strengthened by simulation examples. Third-order Volerra model

Model I

+5 x z(nJ)I[, + (5 x 2 --]! . 0 V

This model is from [4] and here z[n, was a unirormly
distributed random variable with excursion [-0.9,
0.91. A third-order no-memory (N = 0) Volterra
model was used and the four terms were identified
using Recursive Least Squares. A neural network Figure 3e. Modeled nonlinearity

M ioe2 A point to note here is that the structure of the
z(n] * z[n - 1] if x[n] > 0 model being simulated was not used in the neu-

Y[11 - 0.4 x z[n] + 0.9 x z[n - 1] otherwise ral network simulation as there is no known way

which is a threshold model. Here z[n] was a uni- to use apriori information for choosing the network
formly distributed random variable with excursion weights. Also, the error achieved after freezing the

[-0.9, 0.91 but the desired output for both the neu- weights is not the lower bound, the adaptation was

ral network and the Volterra simulation was scaled stopped when the error level reached an accept-
down to lie between [-0.9,0.9] (within the range of able low value. The neural network model param-
tanh). The neural network had a 2-5-5-1 structure eters (weights) are few as compared to the number
and Figure 4 shows the frozen error after conver- of terms in the numerator and denominator series,

gence for the two simulations. hence there are several constraints on the values of
the weights and training of these networks requires
fine adjustment of the learning parameters.

7 Conclusions
In this paper we have shown how the multi-layered
neural network is able to approximate arbitrary
nonlinear systems while the Volterra series mod-
els cannot give a representation for these simple
bounded-input, bounded-output models. This has
been shown by analyzing the form of the nonlinear-

Iii ity and using its expansion to compare with those

I of the Volterra series. Finally, simple models are
IL . simulated to support the theory.

Figure 4a. Neural modeling error
References

[11 L. Ljung, System Identification: Theory for tie
user. Englewood Cliffs, New Jersey: Prentice Hall,
1987.

(21 S. Billings, "Identification of nonlinear systems - a
survey," Proc. lEE, P1. D, vol. 127, pp. 272-285,
November 1980.

(3] A. Lapedes and R. Farber, "Nonlinear signal pro-
cessing using neural networks: Prediction and sys-
tem modeling," tech. rep., Los Alamos National
Laboratory, LA-Ut-87-2662, 1987.

[41 M. Schetzen, "Nonlinear system modeling based on
- - - - - the wiener theory," Proc. IEEE, vol. 69, pp. 1557-

Figure 4b. Volterra modeling error 1573, December 1981.
[51 P. Ramamoorthy, G. Govind, and V. lyer, "Sig-

nal modeling and prediction using neural networks,"
6 Discussion in INNS First Annual Meeting, Boston, September

1988.
The first model considered does not have a Volterra

series representation if the range of z(n] is more (6) R. P. Lirpmann, 'An introduction to computingwith neural nets," IEEE ASSP Afagaztme, vol. 4,
than (-0.2, 0.2), which is the case here. The sec- w 4eArl 1987.

nd model considered also does not have a repre-

sentation in Volterra series and the neural network (71 G. Cybenko, "Approximation by superpositions
being a more general model as was shown by the of a igmoidal function," tech. rep., Unpublished

expansions, models this system with a much lower manuscript, 1988.

modeling error.

ADAPTIVE FUZZY EXPERT SYSTEMS FOR CONTROL
APPLICATIONS

P.A. Ramamoorthy, Shi Zhang and Song Huang

Department of Electrical and Computer Engineering, University of Cincinnati, M. L. 30,
Cincinnati, OH 45221-0030, USA

ABSTRACT. A fuzzy expert system (FES) in general performs the task of functional map-
ping (that is, for a set of values of the inputs, the corresponding values of the outputs are
produced), and hence can be used for system modeling or controller design. The functional
mapping is achieved based on the six attributes of the system, namely, inputs, outputs,
fuzzy sets of the inputs and outputs and their associated membership functions, fuzzy as-
sociative rules and the defuzzification procedure. The first four attributes can be defined
rather easily based on some knowledge about the problem at hand. However, it is difficult
to obtain the other attributes due to the non-availability of experts or the inability of the
experts to represent their knowledge in a form needed by the expert system. Also, even
in situations where the rules are available, they may not be optimal. Hence the need to
develop adaptive techniques to optimize the performance of a fuzzy expert system. In this
paper, we present a very general and systematic approach to this adaptation problem and
discuss the advantages of such an approach. The problem of backing up a truck to loading
dock from any reasonable location is used as an example and an optimal controller has
been designed for this problem using this approach. The results obtained indicate that the
approach is indeed viable and can be applied to many problems.

KEYWORDS Fuzzy logic; Fuzzy controller; Adaptive fuzzy systems; Fuzzy expert systems.

INTRODUCTION

Fuzzy expert systems can be considered as vehicles for functional mapping that maps an input

u (a vector of size N) into an output y (a vector of size M) by the function f: u - y. The functions

f can be nonlinear. The mappings are obtained by splitting the inputs and outputs into smaller

and overlapping intervals or fuzzy sets, assigning membership functions (that indicate the degree of

belonging of a particular input or output value to the various fuzzy sets of those inputs or outputs),

fuzzy -rule base or fuzzy associative memories (FAMs) that define the output fuzzy sets to which

outputs belong for inputs belonging to certain input fuzzy sets, and defuzzification procedure that

leads to crisp output values from the selected output fuzzy sets and the membership functions.

More details on fuzzy logic and fuzzy expert systems can be seen in references [1-5].

Deired Actual
Output f - 1 Output

Coacrmler Pln

Fiure 1. Fuzzy taper system as a €oaualar for

uatrallug a proems.

Fuzzy expert systems can be excellent candidates as controllers for controlling machines and
processes (Fig.1) as they enable implementation of complex mappings, especially nonlinear ones,
through a systematic procedure involving linguistic representation of common-sense knowledge.
Further, it allows a model free representation of the mapping and hence overcomes the limitations
and the problems associated with model-based controllers.

A minimum requirement in the use of fuzzy expert systems is that the fuzzy rules are available.
In many practical applications, it is possible to arrive at approximate rules 1 though such available

rules may not lead to an optimal controller. In this paper, we propose the adaptation of the rules
to arrive at an optimal controller. The approach is explained through a specific example defined in
the following section.

PROBLEM DEFINITION

Here we consider the problem of designing an optimal controller to successfully back up a truck
to a loading dock from any reasonable initial location. This is a typical controller design for a

nonlinear plant. Nguyen and Widrow [6 1 recently showed that a nonlinear controller in the form
of two-layer neural network architecture with 26 nodes can be successfully designed. We chose this
problem as an example since the mapping is complex and involves a large number of starting points
and trajectories. Kong and Kosko [7] considered the same problem and compared the performance
of such a neural network based controller with that of a controller based on fuzzy expert system
composed of 3.5 rules. They observed that even their simple FES leads to smoother trajectories
than those produced by the two-layer network. We use their rule base as a starting point for our

adoption procedure.

Fig. 2 shows the details of the truck-backer-upper problem and input and output variables
of the system. Given enough clearance between the truck and the loading dock, the y-position

can be omitted as an input to the controller. The ranges of the inputs, x-position, and the truck

'If this is not readily obvious, one should consider the tasks such as driving, operating a machine tool etc and the
basis for their operation. We do such tasks sub-consciously or as--matter-of-fact. Once we master the techniques,
we can put them into approximate rules with some effort.

S- _ Trck LTu*

I

Z a rcoo*+d). d.y. Si sO) (30.100) I

(a)a

18.0d (100.0)

Figure 2. 1 a Slock sa funy exper sysrem based cO)(ioster
to back-ep a tack.

('*) PWW 1 of the i ing I*" bad te truck (ti

orientation angle 0, and the output, steering signal 9, are given as:

:'0, 3601: :-10. 1001; : 1-30301
lu .zp • 'sck.

ft tX X CK RC U

-n I n PH a- ir

o e a n n a h o t P S PteS3m se

1.,AA ma 61 : o ol o:L:o i3o

o 100 P P

L .v X4 P I Ps

030 0 Ntm 4. The Wbow of the mak bah-p pmNinm.

11pmr 3. MamibM.sbp fesuem of the V ma (mts ms Q"

the ste ai te mput gsawle

Having identified the variables and their ranges. fuzzy subsets of the variables must be specified.

Fuzzy subsets are simple linguistic terms and associated numerical ,;alues corresponding to the

input and ow p,1, variables. They are used to split the total range of the variables into smaller and

overlapping ralnK,'s. The next step is the selection and identification of the membership functions

associated wit Is Its, various fuzzy sets. The membership functions simply describe the degree of

associatiott of a particular input or output value to the fuzzy subsets corresponding to that inpitt or

out put variabi,. The membership functions of the 10 variables for the truck-backer-upper problem

~~~~~ _ amnonmunmnummn~lt ~ in mnllll~~lnumM IHl l



are given in Fig. 3. Membership functions can have different shapes depending on the designer's

preference, knowledge or experience. Triangular and trapezoidal shapes are used here for simpler

calculation and better description of the problem.

A fuzzy rule base or fuzzy associative memory (FAM) is a collection of fuzzy rules which define

or describe the relationship between the input fuzzy sets and output fuzzy sets. The rules are given

in the conventional IF-THEN form, with an antecedent part that describe the conditions, and a

consequent part that states the conclusions or actions. Fig.4 is the rule base for the truck-backer-

upper controller problem as defined by Kong and Kosko. This rule base indicates the possible

ranges for the output values given the input values. The final crisp output values of a fuzzy expert

system are determined using a procedure known as the defuzzification process. Min and Max infer-

ence with centroid method is mostly used as the defuzzification procedure and truck-backer-upper

control problem as well. The MIN-centroid procedure is illustrated in Fig. 5 and is carried out a.-

follows:
lv c

I I I

117: 'A A aputi I

IV V CiE PSI

TVE' CE t' Z

E- r:11 I A IV &WdI is C
TWOOutist C

TRW C is 31

ripm. & Am eaamie d iNd-Cutnid Iady*N&

If the inputs x,O are x-O and 46o respectively, at some particular instant, x0 can fall under the

domain of a maximum of two fuzzy sets (assuming that the fuzzy sets are chosen to lead to a max

of two fuzzy sets for any input value) and 0 can similarly fall under the domain of a maximum of

two fuzzy sets. Thus we have either one, two or four rules firig for any given inputs values. In
the case of a single rule, if the rule is in the form of "AND" (OR), the values of the membership

functions at x = xo and Oo = 0o are found and the minimum (maximum) is chosen. This value is

used to clip the output membership function corresponding to the output fuzzy set selected by the

rule and the centroid of the clipped area becomes the output 8o of the fuzzy system. If more th.-
one rule gets activated, the combined centroid of the clipped area is the output. The trajectories



of the truck from various initial positions backing up to the loading zone controlled by this fuzzy

expert system is given in Fig. 6 (for clarity purposes, we have shown this as four separate diagrams

corresponding to various starting positions). Though Kong and Kosko claimed that the trajectories

produced by the FES are better that the ones produced by the neural net controller, it can be

observed that the FES controlled trajectories are not smooth either.

ADAPTIVE FUZZY CONTROLLER

We have a fuzzy controller that succeeds in backing up the truck to the loading dock from any
starting point. However, the performance is not very satisfactory and thus there is the need to
consider adaptation of the fuzzy controller to obtain more smoother trajectories.

As. 6 Td a sammni 41 t&. ueaa mmdw

There are many ways that the fuzzy system or controller can be adapted to optimize the per-
formance. In Fig. 7, we show the general concept. There we have, in addition to showing in block
diagram of the steps involved in calculating the output of a fu:.y system. shown weights at strate-

gic places which can be adapted or modified to obtain improved performance. We can also define

different weights corresponding to each segment of the membership function with a constant slope
and regions where the fuzzy sets overlap and so on (Fig. 71). Such assignments would make the



Block diagram of a an adaptive MEI/CIENTROID method
of output calculation,where the weights have to be

adjusted to obtain the required mapping. Steps showu are
for one output calculation when J rules are invoked

N - Number of input
X - Number of outputs
11 - ith input
Xi - ith output

xi0 - Value of itl input at a particular time
YiO - 'alue of ith output at a particular time
-.,F1 (,Iyi) - Membersh function of fuzzy set kj of outpait Yi
Mjx, ) - Mem be p function value at zi = Zip of the

fuzzy set of input xi that invokes rule j

I W Membership
Function area

T, at & Centro

rulei

common
centraid W YiO
calculation

Pig, 7A

kI emb/rshi

Fig -,AX

Uup & w O u tpu

V1..au. Sepaw at ,,,,eg k,, , ,m, fum~ ,u

w!N-



adaptation simpler by making the individual adaptation domains smaller and lead to a technique

that can be analyzed in a systematic manner. In this paper, we consider adaptation of the weight

in the overlapping fuzzy regions only. The optimization is performed as follows:

We assume that the truck is at some random position (z.1d, Yold, 0od) and the corresponding

controller generated angle is 0o.d. The truck moves by a fixed distance with a steering angle of 001d,

and comes to a new position z,w, y,,, 0, and the corresponding controller angle for the new

position is denoted as 0,,. The objective function minimized is then given by:

J = K - 0old) 2

and leads to weight update equations:

n= 4ewn - 0oldA]

Wneu, = WL10J + AW

where e is a positive, very small constant. After the weights are adjusted using the above update

equation, the truck is moved to a new random location and the process is repeated (we stopped

the algorithm after 10,000 iterations). The results are shown in Fig. 8-12. In Fig. 8 we show

the learning curve of two of these weights. Figs. 9-11 give a specific trajectory of the truck, the

truck angle 0 , and the steering angle (control signal) using the original and the optimized fuzzy

controllers. Fig.12 shows the performance index that is being minimized. In Fig. 13, we show the
trajectories starting from various initial positions. As can be seen from the figures, we are able to

achieve substantial improvement in the performance by attaching weights to the rules and adapting

them.

SUMMARY

The use of tunable fuzzy expert systems as nonlinear controllers in the control of a nonlinear
plants is considered in this paper. We show how weights can be attached to fuzzy expert systems

in a systematic manner and adapted to optimize a desired performance. Results from a specific

application are shown and the results indicate that it is indeed possible to achieve good performance

by tuning the controller. Of course, more work needs to be done along the lines indicated in this

paper. We are currently working on those problems.

REFERENCE

[1] L.A. Zadeh, "Outline of a New approach to the Analysis of Complex Systems and Decision

Processes," IEEE Trans. SMG, pp. 28-44, 1973.

(21 L.Z. Zedeh, "Commonsense Knowledge Representation Based on Fuzzy Logic," IEEE Comp.
Vol. 10, pp. 61-65, 1983.



1..

Fig S.Tuk nl oa b i" otoe i.IIS~m ial iigte060 ~tl

sm* the o-lC ol d ra .

~J~-~-- ----.- 
_ _

* 
a aup

04 -j -'V Wa no 4d SW " a "



[31 Fuzzy Sets and Application:Selected Paper by L.A. Zedeh, ed. R.R. Yager et al. John Wiley

and Sons, 1987.

[4] L.A. Zadeh, "Fuzzy Logic," IEEE Computer, pp. 83-93, April, 1988.

[5] B. Kosko, "Fuzzy Entropy and Conditioning," Information Sciences, Vol. 40, pp. 165-174.

1986.

[6] D.Nguyen and B.Widrow, "The Thuck Backer-upper: an example of self-learning in neural

networks," Proceedings of IJCNN 1989, vol. 2, pp. 357-363, June 1989.

[7] Seong-Gon Kong and Bart Kosko, "Comparison of Fuzzy and Neural Truck Backer-Upper

Control Systems," Proceedings of IJCNN 1990, Vol. 3. pp 349-358, June 1990.



Cerebellar Model Articulation Controller Neural
Network - A Simple Fuzzy Expert System in Disguise?

P.A. Rrnaoorthy, Song Huang
Department of Electrical & Computer Engineering,

University of Cincinnati, M.L. #30
Cincinnati, Ohio 45221-0030

ABSTRACT

Neural networks and fuzzy expert systems have attracted the attention of many
researchers recently. In general, fuzzy logic uses verbal information for handling
higher-order logical relations between inputs and outputs which are not crisply
defined. On the other hand, neural ne'works are used to obtain information
about systems from large input/output observations and training or learning
procedures. Thus, fuzzy logic and neural networks solve the same problem using
different formulations. In this paper, we provide some insights along these lines
by comparing a particular neural network architecture, that is, the Cerebellar
Model Articulation Controller (CMAC) with fuzzy expert systems. We show that
CMAC is in reality a simplified version of a fuzzy expert system though the former
has been derived independently from biology-related concepts. We further show
that these equivalences can be exploited to arrive at superior system modeling
techniques that will retain the important aspects of these two areas. Such an
approach will have both the design by trainability aspect of CMAC architecture
and the decision making based on fuzzy or imprecise data property of fuzzy expert
systems.

INTRODUCTION

Research in artificial intelligence, neural networks and fuzzy expert systems has progressed
in parallel lines with one or the other (at one time or another) considered as the best and catch-
all-solution for all the problems in the world. In reality, each method has its own advantages,
and drawbacks and can be applied to only certain types of problems. The strengths of neural
networks are the ability to learn specific input-output mappings from large input/output data
samples possibly corrupted by noise, greater degree of robustness and the ability to adapt or
continue learning. The strengths of fuzzy expert systems are the ability to deal with fuzzy
information and incomplete or imprecise data in a structured or logical way. On the negative
side, in the case of neural networks, questions such as how one can decide on the number
of layers or nodes in the network, how one can train large. networks or incorporate some
structural information that one may have into such a network and if the network is successful
in solving a problem, how one can explain their performance etc. remain open. In the case of
fuzzy expert systems, the questions are how one can obtain a fuzzy rule base or fuzzy associate
memory (FAM) if no expert is available or if the expert is unable to put his/her knowledge
into a form which can be processed by computers or what to do if such rules themselves
are not perfect or optimal. Since both of these techniques implement the same task (that
of functional mapping and we can regard "inferencing" as one specific category under this
clan), a fusion of the two concepts that retains the individual strengths while overcoming
their individual drawbacks will have excellent applications in the real world.

In this paper, we use one particular neural network - Cerebellar Model Articulation Con-
troller (CMAC) - as an example to show that the concepts of inferencing by large data samples
through a well connected network (the case of neural networks), and the inferencing through a
set of fuzzy rules as well as their fuzzy sets and membership functions (the case of fuzzy expert
systems) are very similar. The similarity exists not only in the aspect of causality (conducting
inferencing through structural ways), but also in the aspect of methodology (breaking input
domains into smaller subsets, sparse and regular interconnections between input and output

7AI



domain). In the particular case of the CMAC network, we also show that it is a simple version
of fuzzy expert systems.

CMAC NEURAL NETWORKS

A neural network can be considered as a system that maps an input u, a vector of size N,
into an output y, a vector of size M, by the function f : u - y [1]. The mapping is performed
in the network or system by weighting each and every input, summing the results, subtracting
a bias value and passing the result through a nonlinear function which may produce a binary
or bipolar or continuous value (between -1 to 1) for each output. Thus, it can be noticed that
a neural network is nothing but a non-linear network. The mapping function f is assumed to
be unknown and is estimated from several numerical I/O samples (ui, yi) through the training
procedure.

A boe, we described a one-layer feed-forward model of a neural network. It is widely
assumed that the Kolmogrov's theorem on functional approximation is a proof that a two-layer
neural network is sufficient for approximating arbitrary non-linear systems given sufficient
number of hidden nodes 12]. But, it is only an existence proof and does not tell us how to
arrive at the network. In fact, there surfaced questions as to whether this- theorem itself is
applicable to the problem at hand [2], but we are not concerned about that issue here. From
our perspective, a neural network is a non-linear system with interconnected neurons, which
maps an input into the output via the non-linear function f, and the function f is not given
or known but estimated from a set of numerical I/O samples.

The Cerebellar Model Articulation Controller (CMAC) neural network was introduced
by Albus [3, 4, 5] and seems to be getting renewed attention through the work of Miller,
et al., [6, 7], Ersu, et al., [8] and Moody [9]. CMAC has been suggested as an alternative
for backpropagation networks I to achieve better performance [7]. Since backpropagation is
basically a gradient decent technique, applied to a multilayer nonlinear network it needs a
large computation time, converges slowly for large systems, and has an error surface which
may contain local minima. The CMAC network contains a single linear feed!orward network
that has to be trained and hence does not require error propagation etc. and therefore can
learn the mapping rather quickly.

If we go through the description of the CMAC network, we will find definitions such as
input sensors, receptive fields, input generalizations, input quantization, threshold logic gates,
state-space detectors, collisions, virtual addresses, random hashing functions and multiple field
detectors. Figure 1 is a simple example of a CMAC neural network from Miller et al. [7]. It
has two inputs and one output. The operation of a CMAC neural network can be explained
in simple terms as follows: 1. Each input is represented in a non-weighted representation with
one "on-off" or binary line for each quantization level (for example, if the input ranges from 0
to 255 and spans only integer values, we will have 256 lines). 2. A certain number of adjoining
lines are combined into a single entity, called input sensors (input generalization). They may
overlap, leading to the term offset (input quantization). 3. The input-generalizations from
various inputs are connected to a set of AND gates, called state-space detectors, in a regular
and sparse fashion in order to reduce the interconnections. 4. These state-space detectors
are connected to a smaller set of OR gates, called multiple field detectors. The connections
are determined by assigning virtual addresses to the AND gates and passing the addresses of
the active AND gates through a random hashing function. 5. The outputs of these multiple
field detectors are weighted to produce the final results. The weights are determined, or
equivalently the mapping function f is determined, based on observed data pairs (ui, Id) and
supervised learning. In Figure 1, the input sensor's receptive fields are of rectangular shape,
i.e. the output of the input sensors are binary values. Miller, et al., recently modified the
original CMAC architecture [10] where it is suggested that: 1. The input sensors implement
local receptive fields with tapered sensitivity functions (that is the sensor output is 1.0 if the
input is in the center of the receptive field, and the output decreases linearly towards 0.0

I Backpropagation refers to an approach used to train nmutilayer networks and can be applied to any

network. Hence it is not correct to call the multilayer perceptron network as a backpropagation network. We
use it here as it has become a common practice.



fro inputs near the edges of the fields). 2. The state-space detectors can be comidered as
analog units ( multiplication rather than logic AND gates) with the property that the unit
output is 1.0 if all inputs are 1.0, while the unit output decreases to 0.0 if any input decreases
to 0.0. 3. The multiple field detectors can be considered as simple summing units (rather
than logic OR gates). The network output is then the sum of products of a certain number
of non-zero multiple field detector outputs and corresponding weights. It is indicated that
the modified CMAC architecture has better properties than the original CMAC because the
modified version provides continuous instead of piece-wise function approximations..

FUZZY EXPERT SYSTEMS

Fuzzy logic developed by L.A. Zadeh (11, 12] can also be considered as a system for
mapping (linear and nonlinear). The mappings are obtained by splitting the inputs and

outputs into smaller and overlapping intervals or fuzzy sets, assigning membership functions
(that indicates the degree of belonging of a particular input or output value to the various
fuzzy sets of those inputs or outputs), fuzzy rule base or fuzzy associative memories (FAMs)
that define the outputs fuzzy sets to which (expected final) outputs belong for inputs belonging
to certain input fuzzy sets, and defuzzification procedure that provides the crisp output values
from the selected output fuzzy sets and the membership functions.

To better explain the concept of how a fuzzy expert system conducts inferencing, an
example from Kong and Kosko's paper is described [13]. The problem is to design a fuzzy
controller to successfully back up a truck to a loading dock from any reasonable initial location.
The inputs to the controller are the z, y positions of the truck and the truck orientation angle
0 measured with respect to the z axis and the output is the steering signal 8. For a given
command signal 0, the truck will move by a fixed distance and Wait for the next signal from
the controller. It is indicated that if enough space is given between the truck and the loading
dock, then the V-position can be omitted as an input to the controller. The ranges of the
inputs, x and 0, and the output, 9, are given as: 0: [ 0, 3601; x: [ 0, 100]; 0: [ -30, 301.

Having identified the variables and their ranges, fuzzy subsets of the variables and their
membership functions must be specified. Fuzzy subsets are simply linguistic terms and their
numerical values corresponding to the input and output parameters. They are used to split
the total range of the variables into smaller and overlapping ranges. Membership functions
describe the degree of belonging of a particular input value to the various fuzzy sets and
can have different shapes depending on the designer's preference or knowledge or experience.
Triangular and trapezoidal shapes are used here for simpler calculation and better description
of the problem. The membership functions of the variables for the truck-backer-upper problem
are given in Figure 2.

STATE 0(0)SPACE

DETECTTORS WEIGHTS0

' OUTP('T

0 so io

: ~A AIY v

LCPV'T MILD .- 0 0 30
SEN'SORS DETECTORtSFIG. 1. A simple CMAC with 2 inputs and I output. Flu. 2. The membeship function of TBU.

A fuzzy rule-base or fuzzy associative memories (FAMs) is a collection of fuzzy rules

which define or describe the relationship between input fuzzy sets and output fuzzy sets.
The rules are in the conventional IF-TIIEN form, with an antecedent part to describe the
conditions and a consequent part to state the conclusions or actions. Figure 3 is the rule-



base for the truck-backer-upper problem defined by Kong and Kosko. This rule-base simply
indicates the possible ranges for the output values given the ranges for the input values. The
final crisp output values of a fuzzy expert system is determined using a procedure known as
defuzzification process. The centroid method is mostly used as the defuzzification procedure
and for the truck-backer-upper control problem as well. The trajectory of the truck starting
from a given position backing up to the loading zone controlled by a fuzzy expert system is
given Jn Figure 4.

z-post iea

UE LC Cz Ac aX

PISl Ps Ps IPR n a

RV ZU PS PH ps Ps

v - - - - Starting
Vlo Position:

(0) V& n 10 ZE P P z = 30

LV I U N PH Ps g20
--- 30

LV a3 a M W5 21_____________

s M Y - No FIG. 4. A trajectory of the truck

FIG. 3. The rulebase of the TBU. using a fuzzy controller.

MULTI-LAYER NN AND CMAC VS. FUZZY EXPERT SYSTEMS

From the definitions or steps involved in the implementation of CMAC neural networks
(we discuss in terms of CMAC networks since it has been demonstrated that CMAC provides
better performance than multi-layer networks) and fuzzy expert systems, it is clear that there
is a good amount of similarities between the two approaches. The original CMAC can be
considered to be a fuzzy expert system implementation where the receptive fields correspond
to the fuzzy sets of the inputs with rectangular membership functions. The modified CMAC
by Miller, et al., [7] modifies that membership function to a triangular one. In both, the
input sensors correspond to joining many adjacent quantization levels of the input and thus
correspond to the range selection for a fuzzy set. The output of the input sensors can then
be thought of as pointers (binary valued) to those range of input values where a specific
pointer becomes one only if the input falls in that range and zero otherwise. We can call
such pointers as IFSPs (Input Fuzzy Set Pointers). Next, the outputs of these sensors (from
different inputs) are ANDed (state space detectors) and the outputs of such units are ORed
(multiple field detectors) in the original CMAC. It can be noted that the relationships between
the outputs of these multiple field detectors (which are binary valued) and the outputs of the
input sensors are expressible in boolean-sum-of-product form. If we define OFSPs (Output
Fuzzy Set Pointers, binary valued) corresponding to fuzzy sets of outputs, the fuzzy rule base
corresponds to a set of boolean-sum-of-product expressions for OFSPs in terms of IFSPs.
Thus, the outputs of multiple field detectors in CMAC correspond to OFSP values in fuzzy
expert systems. Finally, the output of a CMAC is simply a (linear) weighted version of these
pointers2 , where as a fuzzy expert system uses more complex procedures (MIN,centroid, etc.,
operations) to produce the final output. Thus, the complexity is in the front end for a CMAC,
where as it is uniformly distributed in the fuzzy expert system.

From the above descriptions, it can be inferred that a CMAC is indeed a simple fuzzy
expert system in disguise. In the case of fuzzy expert systems, as we are able to solve the
problem with very few fuzzy sets (of each variable). In the case of CMACs, as we do not make
use of any available knowledge, we have to make use of a large number of fuzzy sets or input
sensors. There are certain advantages in a CMAC approach over a fuzzy expert system. The
use of a large number of multiple field detectors (or OFSPs) might allow the approximation

2 It can be argued that in the modified CMAC, a €uianglar m bersMp function is attadced to ea&h input
senor ranges and the exact value o( the msmbershp function " the given input values modifies the value of
them pintes to something in the range 0 to 1.



of complex and arbitrary mappings. Also, the training and linear stage for training makes
the CMAC an attractive architecture for machine learning.

We can arrive at a new architecture (we call it "Neuro-Fuzzy" architecture) that will
combine the properties of both neural networks (structure and trainability) and fuzzy systems
(incorporation of apriori information, such as fuzzy sets and membership functions) without
any of their drawbacks. Such a structure would be similar to the architecture shown in Figure
5. One would start with given I/O samples, make some assumptions about the number of
fuzzy sets, their ranges and membership function shapes and train the various networks in
Figure 5 in a systematic manner. That is, the number and the ranges for the fuzzy sets will be
adapted based on I/O samples and once they are learned, the third network will be trained.
The third network can again be decomposed into a number of smaller networks as shown
in NN#2 of Figure 5. Since the data sets for each network will be comparatively smaller,
the training can be achieved at a faster rate. Further, this architecture can be used as an
implementational vehicle for fuzzy expert systems with a large number of input variables. The
classical approach of implementation of fuzzy expert systems becomes too time consuming in
such a case as the number of rules increases exponentially with an increase in the number
of input variables. We are now looking into the various issues in the trainability of this
architecture and other related issues. We give results of an example based on this technique
in the next section.

NUMERICAL EXAMPLE

We tested the trainability of our neuro-fuzzy architecture using the truck-backer-upper
controller problem. The truck-backer-upper fuzzy expert system controller has 7 input fuzzy
sets for z-position, 5 sets for orientation angle 0, and 7 output fuzzy sets for the steering
signal 0. Since more accurate results are required when the truck is in the center area or
near the center area, we selected more samples for z-position around 50, and less samples
otherwise. The training samples of 0 are chosen in the same fashion. It led to 34 z-positions
and 72 0 angles. Thus 2448 samples are used to train the controller. The p-positions are
not used in training, thus simplifying the training process. There are 7 sub-networks in the
system. The whole set of training samples is divided into 7 smaller groups according to their
belongings to the output fuzzy sets. The largest group contained 826 training samples and
the smallest one has 271 samples. Some samples are used in more than one subnet due to the
overlapping of the fuzzy sets. This brought the total training samples for all subnets to 3624.
We selected 10 neurons for the second layer of every subnet. The backpropagation algorithm
was used for the training. The number of iterations for training varies from a few hundred
(for smaller sample groups) to a few thousand (for larger groups). The average squared errors
are from 0.0005 (for the centered or near center sets) to 0.0015 (for the extreme sets). The
training samples were normalized to the range of -0.5 to 0.5. To show the robustness of this
architecture, we tried two different approaches for the training. In one training procedure,
we used the inputs, the desired outputs and input fuzzy set pointers as training samples. In
the second method, we used membership functions of the input fuzzy sets rather their IFSPs
as training samples. The truck trajectories produced by the trained networks are shown in
Figures 6 and 7 respectively. As can be seen from the figures, the results are very encouraging.

CONCLUSION

In this paper, we compared the fuzzy expert systems with certain neural networks and
show that a fuzzy expert system can be thought of as an advanced version of multilayer
feedforward networks and CMAC networks. We show that a fuzzy expert system can be
considered as a number of multilayer feedforward networks interconnected in a structured
manner and the interconnection is defined by the concepts of fuzzy sets, fuzzy rules and

3 Fuzy expert system proponents might in turn argue that they can be achieved using few OFSPs and
complex membership functions. Further, they may also question the need for such arbitrary mapping in
real-world applications.



so on. More importantly, we show how these two powerful areas, that of neural networks
and fuzzy expert systems, can be combined together to arrive at superior architectures and
methodology to design adaptive intelligent system.

Block Diagram of NNjP1

lop* MIDOFSPIFSPs are
(bum) (ap"pdw D- vor (Oupotrowused for

2. 09 NOStarting

Position:
z = 30

SofOR ia - ofl M0 dANDpiSuIm 1 aiey=20

0 fOIL pa 0 dof lp = 30

81*4k DiwMg of NN#I2 FIG. 6. A truck Trajectory using
"e" ho X# 1-0 the Neuro-Fuzzy controller.

D"& ob-N 02Membership
sdww 3 0 Pfunction

0 011pot values are
T"040 D~sSob-O 03used for
Sdnr 3training. Starting

Position:

OFSP z = 30
0 1 = 20

Twom D~sSoo-O 0 = 30

FIG. 5. A block diagram of the new Neuro-Fussy model. FIG. 7. A truck trajectory using

REFEENCEthe Neuro-Fuzzy controller.

1. R. P. Lippmann, 6An introduction to computing with neural nets, IEEE ASSP Magazine, 4-22
(April 1987).
2. G. Cybenko, 'Approximation by superpositions of a sigmoidal function", Technical Report, Uni-
versity of Illinois (1988).
3. J.S. Albus, 'A theory of cerebellar functions*, Mathematical Biosciences, 11,25-61 (1971).
4. J.S. Albus, 'Theoretical and Experimental Aspects of a Cerebellar Model', PhD thesis Univ. of
Maryland (1972).
5. J.S. Albus, 'Data storage in the cerebellar model articulation controller', J. of Dynamic Systems,
Mearurement and Control, 228-233 (Sept. 1975).
6. W.T. Miller, 'Non-linear learning controller for robotic manipulators', Proc. SPIE, Intelligent
Robots and Computer Vision, 726. 416-423 (Oct. 1986).
7. W.T. Miller, F.H. Glans, and L.G. Kraft, "CMAC: An associative neural network alternative to
backpropagation', Proc. IEEE, 1561-1567 (Oct. 1990).
8. E.Ersu and H.Tolle, 'Hierarchical learning control- an approach with neuron-like associative
memories', Proc. IEEE Codf on Neural Infor. Proc. Systems (Nov. 1988).
9. J.Mody, 'Fast learning in multi-resolution hierarchies', in Advances in Neural Information Pro-
cesig edited by D.Touretzky (Morgan Kaufmann, 1989).
0.WT. Miller, E.An, and F.H. Glans, 'The design of cinac neural networks for Contral, ,Proc. 6th

Yale Workshop on Adaptive and Learning System (Aug. 1990).
11. L.A. Zadeh, 'Outline of a new approach to the analysis of complex systems and decision pro-
cesses, IEEE Trans. Systems, Man and Cybernetics, SM-3 2"-4 (1973).
12. L.A. Zadeh, 'Fuzzy logic', IEEE Computer, 83-93 (April 1988).
13. S.Koug and B.Kosko, 'Comparison of fuszy and neural truck backer-upper control systems",
Proc. of IJCNN, HL1,349-358 (June 1990).



Procredinga ol tie IZEE i.tsnta~s ,4i C,.o.e4c rsa~, u i .snw Zigmanit~rng
Awga; 1991, Dqeton, Oio

FUZZY EXPERT SYSTEMS VS. NEURAL
NETWORKS - TRUCK BACKER-UPPER CONTROL

REVISITED

P.A. Ramamoorthy and Song Huang

Department of Electrical & Computer Engineering,
University of Cincinnati, M.L. #30

Cincinnati, Ohio 45221-0030
FAX: 513-556-7326, Email: pramamoo~nest.ece.uc.edu

ABSTRACT networks). The major difference is that the fuzzy expert sys-
tems use logic rules for inferencing while neural networks

Research on neural networks and fuzzy logic have pro- are data-driven. Therefore, fuzzy expert systems can be
gressed on two independent paths. In general, fussy logic considered as macroscopic tools for information processing,
uses verbal information for handling higher-order logical re- whereas neural networks are microscopic in nature. The
lations between inputs and outputs which are not crisply de- advantage of the neural networks is their ability to learn
fined. On the other hand, neural networks are used to obtain the mapping through training. The advantages of fuzzy
information about systems from large input/output obser- expert systems are their ability to provide nonlinear map.
vations and training or learning procedures. From these def- ping through the membership functions and fuzzy rules, and
initions, it appears that fuzzy logic and neural network ful- the ability to deal with fuzzy information and incomplete
fil two complementary functions. Hence, a merger of these and/or imprecise data. By merging the advantages of these
two concepts could lead to powerful yet flexible knowledge two systems, one can arrive at a more powerful yet flexible
processing tools. This paper provides some insights along system for inferencing and learning. This concept will be
these lines using the truck-backer-upper control problem. explained through the use of results for the truck-backer-
New network architectures by merging these two concepts upper control problem.
and simulation results for the truck-back-upper problem
using the new architecture are also shown in this paper.

PROBLEM DEFINITION

INTRODUCTION The truck backer-upper control is a typical nonlinear
control problem where a controller to successfully back up a

Both neural networks and fussy expert systems are sys- truck to a loading dock from any reasonable initial location
tms that map an input a (a vector of size N) into an output has to be designed. Nguyen and Widrow (5] showed that a
V (a vector of size M) by the function f :u -- 1. In a sins- nonlinear controller using a two layer neural network archi-
pit neural network, the mapping is performed in the system tecture with 26 adaptive neural elements can be successfully
by weighing each and every inputs, summing the results, trained. Recently, Kong and Kosko [6] compared the perfor-
subtracting a bias value and passing the result through a mance of such a neural network based controller with that
non-linear function which may produce a binary or bipolar of a controller based on a fuzzy expert system composed of
or continuous value [1,2]. Such networks may be cascaded to 35 rules. They observed that even that simple fuzzy expert
propagate the intermediate results to higher levels for more system lead to smoother trajectories than that produced by
sophisticated problems. In the case of fussy expert systems, the two-layer neural network. If their observations are valid
the ranges of the inputs and outputs are split into smaller in general, it is desirable to arrive at a logical explanation
and overlapping ranges or fuzzy sets. A fussy membership for the differences in the performances. More importantly,
function is associated to each fuzzy subset. The mechnf as stated earlier, approaches that can retain the attractive
niasm governing the mapping from the input fussy sets to properties of neural networks and at the same time obtain
the output fuzzy sets is a collection of fuzzy rules - fussy performances comparable to that of fuzzy expert systems
rule bane or fuzzy associative memories (FAM) [3,41. The need to be developed.
mapping from the inputs a to the outputs r is achieved Figure 1 shows the loading zone of the truck-backer-
through these fussy rules, the membership functions, and upper problem and the input and the output variables of
the defussification procedure. the system. If enough clearance is given between the truck

There ar similarities and differences between these two and the loading dock, then the y-position can be omitted as
mapping systems. The similarities include provision for an input to tune the controller. The ranges of the inputs, x-
dealing with imprecise data or data corrupted by nise, position and the truck orientation angle 0, and the output,
having similar primitives or building blocks to produce son- steering signal 0, are given as:
linear mapping (membership functions, fuzzy rules, MAX-
MIN or centroid operations, vs. sigmoid functions in neural 0: C 0, 3601; x: ( 0, 1001; 0: 1 -30, 301

221



Having identified the variables and their ranges, fuzzy sub- antecedent part to describe the conditions and a consequent
sets of the variables must be specified. Fuzzy subsets are part to state the conclusions or actions. Figure 3 is the
simply linguistic terms and their numerical values corre- rule-base for the truck- backer-upper problem defined by
sponding to the input and output parameters. They are Kong and Kosko. This rule-base simply indicates the poe-
used to split the total range of the variables into smaller angle x-position
and overlapping ranges. The next step is the selection or
identification of the membership functions associated with (0) LE LC CE RC RI
the various fuzzy subsets. The membership functions sim- s N8 NB
ply describe the degree of association of a particular input
or output value to the fuzzy subsets belonging to that in- RU ZE PS PH PB PB
put or output parameter. The membership functions of the
variables for the truck-backer-upper problem are given in RV Ns 11 PS PK PB
Figure 2. Membership functions can have different shapes

depending on the designer's preference or knowledge or ex- VE NB NH ZE PH Pe
perience. Triangular and trapezoidal shapes are used here
for simpler calculation and better description of the prob- LV NB NN HS PH PB
lem.

A fuzzy rule-base or fuzzy associative memory (FAM) LU NB NB NH NS ZE
is a collection of fuzzy rules which define or describe the re-
lationship between input fuzzy sets and output fuzzy sets. LB PB PB NH NB NB
The rules are in the conventional IF-THEN form, with an

Loading dock (tO0 100) Figure 3. The rulebase of the TBU problem.

I sible ranges for the output values given the input values.
(50,100) The final crisp output values of a fuzzy expert system arare

Y rdetermined using a procedure known as defuzzification pro-
con. Centroid method is mostly used as the defuzzification

y) procedure and for the truck-backer-upper control problem
as well. The trajectory of the truck from a given position
backing up to the loading zone controlled by a fuzzy ex-

front pert system is given in Figure 4. The trajectory of a truck
produced by a two layer neural network accordingly is re-

(0,0) ,- x (100.0) produced as Figure 5 (Kong and Kosko). The controller
has 24 hidden neurons and trained by over three thousand

Figlure 1. The loading sone of the TBU problem, samples.The conclusion drawn by Kong and Kosko is that a fuzzy

a(W) expert system controller is superior compared to that of a
neural network. If both fuzzy expert systems and neural

10 networks provide robust nonlinear mapping, the difference
in the results of these two systems should not be significant.
One may argue that the differences may be due to the size
of the network, input/output samples used for training and

0 90 360 the number of iterations. (But such practical constraints are
bound to exist). On the other hand, one can argue that even

81 if such parameters (as the number of nodes) are increased
1.- to the maximum practical limit, the neural network per-

formance may not be comparable simply because the fuzzy
expert systems use more information in a structured way.
We take the later attitude and proceed from these to arrive

0 so too at a methodology that will combine the best of both worlds,
trainability in neural networks and better mapping property

n(9) of fussy expert systems. This will become dear in the next
- ~ section.

NETWORK 1.EPILESENTATION OF FUZZY
EXPERT SYSTEM

-3 0 0 30 Let us examine the steps in implementing a fuzzy expert
Figure 2. The membership functions of the TBU problem. system. Given the exact input values, we first determine

222



the fuzzy sets to which these inputs belong. If we use an of this procedure are possible depending upon what kind
unweighted binary representation for the inputs (i.e. Q lines of information is available. We will be discussing all such
carrying 0 or I for Q quantization levels) and one bit per possibilities in another paper.
fuzzy set to indicate if a particular input has fallen under Let us now show the results based on the above ap-
that fuzzy set (we call this as input fuzzy set pointers), proach. There is no training for the first two blocks of Fig-
this step can be represented as an OR network as shown ure 6a as indicated before. The third block is trained by
in Figure 6a. The inferencing from the rule-base can be 1) using both input and output fuzzy set pointers, inputs x
thought of as turning "on or oV of the bits denoting output and 0 values and output values and 2) using output fuzzy
fuzzy sets based on which input fuzzy set has been selected. pointers, input membership function values and input, out-
Thus, the inferencing can be represented by a two-layer
AND-OR (or sum of product) network (the second block in
Figure 6a). The defuzzification process can be represented
as yet another network whose inputs are the output fuzzy
set pointers and the membership function values for a given
input value. The outputs of this network will be the final
outputs of the fuzzy expert system. This network can be
subdivided into smaller networks, each of which can be a 2
or 3 layer perceptron networks as in Figure 6b. The number
of sub-networks is equal to the number of output fuzzy sets
in all the output variables and each sub-network generates
an output if and only if that network is enabled by the
corresponding output fuzzy set pointer. The outputs from Figure 5. One trajectory of the truck by a NN controller.
the selected networks are averaged to find the final outputs. put values. The data needed for the training were generated

From the above discussion, it is obvious that these three using the original fuzzy controller.
blocks constitute a network representation of a fuzzy expert The truck-backer-upper fuzzy expert system controller
system. Thus, it is conceivable that the performance will has T input fuzzy sets for x-position, 5 sets for orientation
be poor (degraded) if we try to represent the tasks of theme angle 0, and T output fuzzy sets for the steering signal 9.
three individual blocks in a single 2 or 3 layer neural net- Since more accurate results are demanded when the truck
work. One may argue that a 3 layer network is sufficient is in the center area or near center area, we selected more
to represent any nonlinear mapping. But this is only true samples for x-position around 50, and lea samples to the
from a theoretical point of view but may not hold from an n. D40u d NN*I1

engineering point of view.
Having identified the network implementation of a fuzzy . . o am

expert system, we can use this structure and any additional Omv, P" " 2-.b_100 M o
knowledge (besides large input/output sarples) that we M set O,-)

may have to find the actual interconnections/weights of the nL A Jo.

individual blocks. For example, if we assume that the fuzzy X an

sets (of inputs and outputs), the corresponding membership t oa p.. .@.d w o A.ms,,.. 0 Id .ol
functions and the fuzzy rules are known but the defuzifi- a *O ,, a 4,,o,

cation procedure is unknown, the architecture of the first
two blocks can be arrived at very easily and the third block 0 ifm .4 M#2

can be trained using the output fuzzy set pointers, mem- aw. mao-s
bership function values and the desired outputs. Such a
training can be very fast as we have represented the third hom
block as a number of smaller sub-blocks. Many variations - _ .

0

kTam" se" 0

lbs . ... a.,s

no 00 .6 bW IM 684 W..

Figure 4. One trajectory of the truck by a fuzzy controller. Figure 6. Block diagrams of the FES-ViN system.

223 .



extremes. The training samples of 0 are chosen in the same perior results than the one generated by a two layer neural
fashion. It led to 34 x-positions and 72 0 angles. Thus 2448 network as shown by Kong and Kosko for this particular ini-
samples are used to train the controller. The y-positions are tial condition. Further, our own efforts to train a two layer
not used in training, thus simplifying the training process. network with 20 hidden nodes with the same input/output
There are 7 sub-networks in the system. The whole set data was only marginally successful and the performance of
of training samples are divided into T smaller groups ac- that controller was very poor.
cording to their belongings to the output fuzzy sets. The
largest group contained 826 training samples and the small- CONCLUSIONS
eat one has 271 samples. Some samples are used in more
than one subuets due to the overlapping of the fuzzy sets. A fuzzy expert system is characterized by six attributes:
this brought the total training samples for all the subuets to 1) fuzzy input variables, 2) fuzzy output variables, 3) fuzzy
3624. There are 10 second-tayer neurons for every subnet. sets of the input and output variables, 4) membership func-
The backpropagation algorithm was used for the training. tions corresponding to the fuzzy sets, 5) fuzzy rules connect-
The number of iterations for training varied from few hun- ing the input fuzzy sets and the output fuzzy sets, and 6)
dred (for smaller sample groups) to few thousand (for larger methodology for defuzzification of the fuzzy output. In all
groups). The average square errors are from 0.0005 (for the real world problems, we will have (or we can infer) useful in-

formation about the first four attributes based on the prob-
lem at hand. Of these four attributes, only two (number 1
and 2) are presently used in the design of neural network
architectures. We showed that by using the other two at-
tributes, one can arrive at new neural network architectures
that will provide superior performance and also smaller net-
works that can be trained rather easily. This concept is
proved through the use of the design of a new controller for
the truck-backer-upper control problem.

In this work, we considered the training of only one of
the three blocks of our new network. However, if informa-
tion about fuzzy subsets and the rules are not available,
one can train the other two blocks as well using some initial
knowledge about the input and the output variables. Once

Figure T. One trajectory by the fnsxy-NN controller, these blocks are trained, we can sort of pull out the fuzzy
rules for further examination and modification. Work along
these lines is being carried out presently.

ACKNOWLEDGEMENT

This research work has been supported by a grant NAG
#3960 from NASA Lewis Research Center, by UC-NASA
Ceter Grat and a grant N 00014-89-J-1633 from Office of
Naval Research.

REFERENCES

1. D.E. Rumelhart and J.L. McClelland, Parallel D.-
triOued Proceuing - Exploration* in the Microstructure of
Cognition, Cambridge, MA. MIT Press, 1986.

Figure S. Oe trajectory by the fmzy-NN controller. 2. RLP. Lippmann, 'An introduction to computing with
neural nets," IEEE ASSP Magazine, pp. 4-22, April 198T.

3. L.A. Zadeh, "Fuzzy Logic,' IEEE Computer, pp.83-
centered or near center sets) to 0.0015 (for the extreme sets). April 1988.
The training samples were normalized to the range of -0.5 4. B. Kosko, "Fuzzy associative memories," in Fuzzy E-
to 0.5. As stated before, either membership function values port System (A. Kandel, ed.), New York. Addison-Wesley,
or input fussy set pointers are used with the input variables 1987.
for training the nets. To show the robustness of this archi- 5. D. Nguyen and B. Widrow, 'The truck backer-upper:
tecture, we did the training by usng them two different sot an example of self-learning in neural networks,' Preceedings
of information. A truck trajectory produced by using the of IJCNN 1989, vo.2, pp. 357-363, June 1989.
neural network corresponding to case 1) is shown in Fig- 6. S. Kong and B.Kosko, "Comparision of fuzzy and
ure 7, and Figure 8 shows one trajectory corresponding to neural truck backer-upper control systems." Prec.,edings of
case 2). It can be noted that both methods produces s- jCNN 1990, vol.3, pp. 349-358, June 1990.

221


